

Sweet Sustainable Science

Sam Holyman & Kaarin Goodburn MBE

Objectives

- To illustrate activities to make the bridge between traditional science teaching and food science
 - Gas Pressure
 - Modelling DNA
 - Chemical change
 - Miscibility
 - Sustainability
 - Perception
- To introduce the free teaching resources available from Chilled Food Association: www.chillededucation.org

UK Chilled Food

Year	Market (£m)		
1989	550		
1999	4550		
2005	7357		
2010	9163		
2017	11876		

- Made in the UK
- Fresh! No preservatives
 - Must keep chilled
- 12,000+ different foods
- ~20 major companies
- 100+ UK production sites

- Market growing at 3+% a year
- New foods all the time
- Applied science careers

People will always need to eat

FOOD: IT'S NOT JUST COOKING... IT'S SCIENCE!

chillededucation.org

Who Does it Take to Make Chilled Food?

70,000 people in the UK inc >1,000:

- Food scientists
- Plant scientists
- Environmental scientists
- Food technologists
- Food microbiologists
- Nutrition scientists
- Packaging technologists
- Engineers
- Hygiene and systems auditors
- New product developers

People who are

ceo

- Good communicators
- Problem-solvers: food forensics
- Passionate about food

Vacancies and long term demand!

Chilled Food Roles and Rewards

- Laboratory-based: Food safety and quality
- Product and process development: Developing new foods
- Working in the supply chain with suppliers and customers
- Working with factories developing good manufacturing practices
- Competitive salaries
- Graduate programmes
- Career development opportunities
- Foreign travel opportunities

How do gas particles move?

- Make a spinner, with one side marked.
- Put a spot in the centre of a double page.
- Spin and put a dot at the pointer end. Move the spinner to the dot, and re-spin. Connect the dots with an arrow.
- Do this 30 times and plot the path.

Understanding our model

- In our model:
 - What does the spinner represent?
 - What does the edge of the paper represent?
- So, use the model to explain what gas pressure is.

Gas Pressure

www.chillededucation.org/science-teacher/science-teacher-lesson-plans

Real Life Food Examples

- Atmospheric gas control use to preserve food
- 3 main techniques:
 - Controlled Atmosphere Packing
 - Large scale fresh fruit & veg storage
 - Modified Atmosphere Packaging
 - Reduced O₂ increases risk of anaerobic growth such as *C. botulinum*. Must control using e.g. low water activity (Aw), keep chilled if high Aw
 - Vacuum Packing retard oxidative rancidity
 - Reduced O₂ increases risk of anaerobic growth,
 e.g. C. botulinum must control

'Packaged in a protective atmosphere'

Structure of DNA

- Deoxyribonucleic acid forms a double helix.
- Watson and Crick suggested the structure in the 1950s using Rosalind Franklin's images of DNA.
- Watson and Crick received a Nobel Prize in 1962 for their work.

Key Terms

Model

DNA

Gene

Chromosome

Definition

Deoxyribonucleic acid, a natural polymer found in the nucleus of cells.

A section of DNA which has information about one protein which determines a characteristic.

Made of thousands of genes.

A simplified version of what is happening. Used to help us understand observations and make predictions.

Modelling DNA

You are going to use sweets to make a model of DNA.

- Why do you need four colours of sweets?
- What is modelling the polymer backbone?
- What is modelling the base pairs?

Modelling DNA

Real Life Food Example

- Food (and human) samples can help identify pathogen presence and help track foodborne illness: Next Generation Sequencing including Whole Genome Sequencing
- DNA can be analysed to identify any microorganisms present
 - DNA will be detected even if microorganisms are dead
 - Are microorganisms a potential threat if they are dead?
 - Could the samples be contaminated?
 - Could lead to false positives
 - A buttered egg and ham salad sandwich filling will contain chicken, pig, cow and what other potential DNA? Why?

How did the Victorians make ice cream?

Ice Cream seller in the 1930s

Chemical change

Match the key word to the definition

Miscible

Immiscible

Separation technique

Density

Definition

A physical process to separate a mixture.

Two liquids that remain mixed to form a solution.

Two liquids that do not remain mixed.

How heavy something is for its size. (=mass/volume)

Miscibility

Real Life Food Example

Mayonnaise (oil in water)

- ~80% oil, 20% vinegar, + egg*+ seasoning
- Oil dispersed as tiny droplets in a continuous phase of vinegar (o/w)
- Mayonnaise does not feel greasy in the mouth – we sense only the continuous watery vinegar phase and not the dispersed oil droplets

Vinaigrette (water in oil)

- 3-4 vols oil + 1 vol vinegar
- Vinegar dispersed as droplets in a continuous phase of oil
- A w/o vinaigrette feels very oily compared with mayonnaise

*emulsifier: stabilises oil droplets

Life Cycle Assessment

- Extracting and processing raw materials
- Manufacturing and packaging
- Use and operation during its lifetime
- Disposal at end of useful life, including transport and distribution at this stage

https://www.youtube.com/watch?v=6RNnzfUHwY8

Yoghurt Pots

Real Life Food Example

- Beef lasagne:
 - Chilled prepared vs home prepared
- Weigh all the fresh ingredients used
- Record weights of any peelings and what you do with them (e.g. throw them away, compost)
- Record any jars and sauces you use and how they are disposed of,
 e.g. recycled, thrown away etc
- Make lasagne noting how long you cooked components
- Weigh then cook lasagne, recording temperature and how long it took from turning on the oven for lasagne to cook
- Weigh lasagne after cooking
- Eat it
- Weigh the food waste and record how it was disposed of
- Calculate heat energy used in cooking, and % food waste
- Difference in heat energy: microwave vs oven?

What are the tastes you can sense on your tongue?

Perception

Real life food example

Scoring System

Taste Panel

PRODUCT Directions Place the numerical so corner Comments should refl 2) score 3) Evaluation of food pro	ect numerical		1 Very poor / r 2 Poor 3 Fair 4 Medium 5 Good 6 Very Good 7 Excellent	nothing
APPEARANCE /COLOUR				
AROMA /SMELL				
CONSISTENCY /TEXTURE				
TENDERNESS (IN MOUTH)				
FLAVOUR				
OVERALL EATING QUALITY				
SIZE OF PORTION				
ANOTHER				

STAR DIAGRAM
APPEARANCE

NAME

Resources Available

- Lesson plans (inc homework and teacher notes):
 - www.chillededucation.org/im-a-teacher
- Consumables:
 - MicroTrumps, Nanobugs microbe tattoos, fridge thermometers, Glo-germ UV kit, food science poster:
 - www.chillededucation.org/food-teacher/food-teacherpractical-resources
- Career path interviews
 - New graduates/placements: <u>www.chillededucation.org/food-</u> teacher-case-studies
 - Established chilled scientists: www.chillededucation.org/career-paths

Please stay in touch.

www.chillededucation.org www.chilledfood.org

